
 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 1 of 25

Mesa Platform Development Kit

Software Customization Guide

Version Date Description Author(s)

0.1 9-Feb-10 Initial Version: Still missing Home

Screen App customization and Splash

Screen customization.

J. McKell

0.2 12-Feb-10 Added Splash & Progress screen

customization

J. McKell,

Z. Johnson

0.3 26-May-10 Added Home Screen customization

information

J. McKell

0.4 02-Jun-10 Reconfigured information for PDK J. McKell

1.0 05-Aug-10 Removed information exclusive to

Branding.

J. McKell

1.1 05-Aug-10 Updated review issues J. McKell

1. 2 30-Aug-10 Minor changes J. McKell

1. 3 1-Oct-10 Added more registry settings J. McKell

1. 4 26-Oct-10 Added information about updating

JSHome gadgets & apps “on-the-fly”.

J. McKell

1. 5 20-Dec-10 Added more information about how to

update JSHome on the fly

J. McKell

1.6 6-Jan-12 Added description and example code

to create a gadget for JSHome

J. McKell

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 2 of 25

Table of Contents
1 Keypad Customization .. 3

1.1 System Level Keypad Customization ... 3

1.1.1 Press/Release Configuration ... 4

1.1.2 Press/Hold Configuration.. 4

1.1.3 Press/Hold Timeout .. 4

1.2 User Level Customization... 5

2 Record Button Customizations ... 5

3 Audio Driver Customizations ... 5

4 Subdued Lighting Mode (boot backlight brightness) ... 5

5 USB ActiveSync ... 6

5.1 Clock Resume Behavior ... 6

5.2 Connection Behavior .. 6

6 USB Host .. 6

7 SD Card ... 6

8 Serial Port Settings .. 7

8.1 Power to COM1 pins .. 7

8.2 Power to DTR ... 7

8.3 Power to RI ... 7

8.4 Port Enable/Disable .. 7

8.5 Custom/Non-Standard Baud Rates ... 8

9 Displayed Battery Average ... 8

10 Getting Started .. 9

11 Home Screen ... 9

11.1 User Customizations ... 9

11.2 System Customizations ... 9

11.2.1 “Favorite” Applications .. 9

11.2.2 Lock Application Choices... 10

11.2.3 Gadget Configuration.. 10

11.2.4 Update JSHome .. 11

12 Appendix A: Scan Codes for Keypad Customization... 12

13 Appendix B: Microsoft Documentation of Application Button Configuration 13

14 Appendix C: Example Getting Started Content File... 14

15 Appendix D: CAB File To Update JSHome ... 15

15.1 Problem Statement .. 15

15.2 Background ... 15

15.3 Application Installation ... 16

15.4 Step-By-Step ... 16

15.5 Sample code .. 17

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 3 of 25

Introduction

This document is intended for Resellers and OEMs that want to customize the Mesa

device for their application or domain. These instructions describe the changes that can

be made in the behavior and appearance of the Mesa device. Customizers can change the

definition/layout of the buttons, the contents of the Getting Started application, the Home

Screen application and Splash Screens.

1 Keypad Customization
There are two levels of customization of the functions that keys can perform, system

level and user level. System level customization allows customizers to change the

behavior of every single button on the device except for the power button. User level

customization is buttons that can be customized by users in the Button Control panel.

1.1 System Level Keypad Customization

At the system level, there are two actions that each key can perform. One when a key is

pressed and released, the other when the key is pressed and held. There is a configurable

timeout for the hold time. The keys are numbered according to this diagram:

0 1 2 3

4 5 6 14
9

11

10

8 7 13 12

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 4 of 25

1.1.1 Press/Release Configuration

Each key has its own registry entry that defines either a scan code (see [insert link to

Appendix A]) or an application name. Note that if both are provided, the scan code

setting will take precedence. If an application name is provided, an optional command

line parameter can also be provided.

Press and Release key customizations are stored in

HKEY_CURRENT_USER\ControlPanel\Keybd\PressRelease\<key number>.

Name Type Description

ScanCode REG_DWORD This is the scan code that should be produced
when this key is pressed

AppName REG_SZ This is the name of the application that is to be
launched when this key is pressed. Note that if
ScanCode is defined, this key is ignored.

CmdLine REG_SZ (Optional) This is the command line for the
application to be launched. Note that if ScanCode
is defined, this key is ignored.

1.1.2 Press/Hold Configuration

The action that is to occur when the user presses & holds a key up to the time out time is

defined in a very similar manner.

Press and Hold Key customizations are stored in

HKEY_CURRENT_USER\ControlPanel\Keybd\PressHold\<key number>.

Name Type Description

ScanCode REG_DWORD This is the scan code that should be produced
when this key is pressed

AppName REG_SZ This is the name of the application that is to be
launched when this key is pressed. Note that if
ScanCode is defined, this key is ignored.

CmdLine REG_SZ (Optional) This is the command line for the
application to be launched. Note that if ScanCode
is defined, this key is ignored.

1.1.3 Press/Hold Timeout

The length of time to choose between a Press and Hold versus a Press and Release of a

key is configurable.

The timeout is stored in HKEY_CURRENT_USER\ControlPanel\Keybd\PressHold.

Name Type Description

Delay REG_DWORD This value configures the amount of time in Milliseconds

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 5 of 25

that should pass before a held key results in a Press
and Hold action. The default value is 1500.

1.2 User Level Customization

The customizer can decide whether keys can be configured by the user or not. In order to

make a key configurable by the user, the customizer must perform a System Level

customization for that key: Scan codes A1 through A6 are used for this purpose. See

Appendix [TWO] for Microsoft OEM documentation.

2 Record Button Customizations
The behavior of the record button can be customized as well. The characteristics of the

recording can be changed if desired. These settings are found in

HKEY_LOCAL_MACHINE\Software\JuniperSys\RecordButton.

Name Type Description

MaxDuration REG_DWORD Maximum length of the recording, default is
2BF20 or 3 minutes.

NumChannels REG_DWORD Number of recording channels to use. The
default is 1.

BitsPerSample REG_DWORD Number of bits per sample, possibilities are 8
and 16. The default is 8.

SampleRate REG_DWORD Sampling rate. The default is 5DC0 or 24000
Note that these values determine the size of the buffer that will be used, which is set aside

at the beginning of recording. If these numbers are set too high, the buffer will fail to be

created and no recording will be made.

3 Audio Driver Customizations
For some situations, it may be desirable to change the gain on the speaker as well as the

quality. These registry keys can be found in

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\WaveDev.

Name Type Description

OverGain REG_DWORD Change the volume. Can be used to
overdrive the audio output. The default is
0x10 or 16, which is unity. Increase to
overdrive the audio output.

OutSamplingRate REG_DWORD Audio output sampling rate. Can be used to
change the quality of the audio output. The
default is 0x7D00 or 32000. Other rates are
untested.

4 Subdued Lighting Mode (boot backlight brightness)
Both the screen and keypad backlight brightness can be set to either a default value or to

the value set in the backlight control panel. This can be toggled at boot time by pressing

and holding (until the progress screen is displayed) <Home> + <Up> + <Brightness Up>.

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 6 of 25

5 USB ActiveSync

5.1 Clock Resume Behavior

Mesa has different behavior from other Juniper Systems products. If a unit is left in

suspend and connected to a PC through USB ActiveSync for a fairly long period of time

(over Midnight, for example), the unit will periodically resume to perform bookkeeping

operations for appointments, alarms, and such. Other Juniper Systems devices will

connect with ActiveSync and will potentially remain on and drain the battery. Mesa will

not connect through ActiveSync and will shut back down when the AlwaysResume value

is set to 0. It will behave like other Juniper Systems products when it is 1.

5.2 Connection Behavior

Mesa will delay a connection to ActiveSync with the ResumeDelay value. This will

avoid issues where a unit is connected when booting or taking a long time to resume. A

partial connection can put the ActiveSync connection into a bad state. This prevents a

partial connection until the device is ready. These settings are located in

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UsbFn

Name Type Description

AlwaysResume REG_DWORD 0=disable USB Client if resuming from RTC,
1=always run activesync, Default is 0

ResumeDelay REG_DWORD Number of milliseconds to wait after a resume
before making an ActiveSync connection.
Default value is 15000 milliseconds or 0x3A98

6 USB Host
The USB Host port can be configured to provide USB power even when the host is in

suspend. This setting can be found in

 HKEY_LOCAL_MACHINE\Drivers\BuiltIn\OHCI

Name Type Description

SuspendPower REG_DWORD 0=IO Port and dock power down during
suspend, 1=keep it powered always. The
default is 0, or off in suspend

7 SD Card
The SD Card can be configured to provide power even when the host is suspended. For

some applications that maintain open files to SD storage cards, this will maintain open

file handles and allow applications to continue writing (or reading) immediately. The

setting can be found in

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\SDHC1

Name Type Description

SuspendPower REG_DWORD 0=IO Port and dock power down during
suspend, 1=keep it powered always. The
default is 0 or off in suspend.

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 7 of 25

8 Serial Port Settings
There are several settings that can be customized depending upon the scenario desired by

the user.

8.1 Power to COM1 pins

The power to the pins on COM1 can be configured to be powered off when the COM

port is closed. This can help in environments where corrosion is high. This setting can

be found in

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Serial1

Name Type Description

TransAlwaysOn REG_DWORD 0= Transceiver is enabled/disabled when
COM port opened or closed, 1= Transceiver is
always enabled. The default is 1 (always
enabled).

8.2 Power to DTR

The DTR pin can be configured such that it can either be powered from the serial port

protocol or when the COM port is opened or closed. This setting can be found in

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Serial1

Name Type Description

DtrAuto REG_DWORD 0= Only apps set/clear DTR, 1= COM driver clears
DTR during COM_Close, if value doesn't exist then
default is 1 (Apps set and clear)

8.3 Power to RI

The power to Ring In or RI can be configured in one of three ways. The Ring In pin can

be controlled independently by JSAPI (default), can be tied to DTR behavior (set when

DTR is set and vice versa) or can be enabled/powered when the COM port is open. This

setting can be found in

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Serial1

Name Type Description

LinkRI REG_DWORD 0= RI power is only controlled by JSAPI, 1= RI power is
set whenever DTR is set, 2= RI power is set whenever
the COM port is open, if value doesn't exist then default
is 0. The default is 0.

8.4 Port Enable/Disable

Sometimes it is useful to disable a physical COM port in order to free up the “COM”

name-space for other services like Bluetooth. Any physical port (COM1, COM3 and

COM7) can be disabled if desired. COM3 is disabled by default. This setting can be

found in

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Serialx where x is 1, 2 or 3

Name Type Description

Enable REG_DWORD 0= Do not load this COM port, 1= Load this COM port.

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 8 of 25

The default is 1 for COM1, 0 for COM3 (Expansion)
and 1 for COM7 (GPS).

8.5 Custom/Non-Standard Baud Rates

It is possible to set a custom or non-standard baud rate. The following table lists standard

baud rate keys. One can change a standard baud rate to a non-standard baud rate by

changing the divisor associated with that baud rate. Only change these values if you are

willing to accept any consequences. There is no warrantee express or implied in sharing

this information. These settings can be found in

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Serial1

Name Default Value

50 0x4800

75 0x3000

150 0x1800

300 0xC00

600 0x600

1200 0x300

1800 0x200

2400 0x180

3600 0x100

4800 0xC0

7200 0x80

9600 0x60

12800 0x48

14400 0x40

19200 0x30

23040 0x28

28800 0x20

38400 0x18

57600 0x10

115200 0x8

230400 0x4

921600 0x1

9 Displayed Battery Average
The displayed battery average is calculated based on a 5 second sample. Currently, the

battery average is calculated over a two minute period or 24 samples (24 samples * 5

samples/second = 120 seconds = 2 minutes). To change the period of the displayed

battery average, change the number of samples in the key found here

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Battery

Name Type Description

AveTTEsamples REG_DWORD Default is 0x18 (=24dec - 24*5 = 120 -->
Averages over a 2 minute time period based
on 5 second polling)

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 9 of 25

10 Getting Started
The Getting Started application is the main place for new device users to learn about and

possibly configure their new device. This is a good place to provide new users with

documentation about how to set up their device – to configure applications or sensors, to

make network connections. Getting Started content is written in HTML. See Appendix

[THREE] for an example file. In addition to the content, changes must be made to the

registry to organize the content in the Getting Started application.

Registry keys are located in

HKEY_LOCAL_MACHINE\System\WelcomeCenter\<language ID>\<topic name>.

Name Type Description

image REG_SZ Path to the image to be displayed for this entry

url REG_SZ Path to the HTML file that contains the information for
this topic

name REG_SZ Text to be displayed in the Getting Started application

order REG_DWORD List position

11 Home Screen
The custom home screen for Mesa has two levels of customization: User customizations

and system customizations.

11.1 User Customizations

Users can change several aspects of the Home Screen:

 User can enable or disable it (Start->Settings->Home->Items)

 User can select the gadgets that are visible (Menu->Configure)

 User can select the application short cuts that are visible (Press and Hold on App

icon)

 User can select either a dark theme or a light theme (Menu->Switch Color

Theme)

11.2 System Customizations

In an effort to “focus” users on tasks/information/applications that the Mesa is

incorporated into, there are several customizations that can be done to focus the user to

the gadgets and applications that are key to a given solution.

11.2.1 “Favorite” Applications

The Home Screen has four “slots” for favorite applications. The default presentation for

the user is (left to right, top to bottom): “Getting Started”, “File Explorer”, “Task

Manager”, and the last slot is unused. These four default “slots” can be customized to

other applications. JSHome can launch applications from anywhere, but will list for the

user all application shortcuts found in \Windows\Start Menu\Programs\. To be most

robust, create a shortcut for your application and place it there. The for slots for

applications are controlled by a registry key:

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 10 of 25

HKEY_LOCAL_MACHINE\Software\JuniperSys\JSHome\Apps

Name Type Description

App1 REG_SZ Full path & name of link file to launch application for slot 1

App2 REG_SZ Full path & name of link file to launch application for slot 2

App3 REG_SZ Full path & name of link file to launch application for slot 3

App4 REG_SZ Full path & name of link file to launch application for slot 4

11.2.2 Lock Application Choices

The application choices can also be “locked” – that is, the user cannot change them. This

is controlled by a registry key as well:

HKEY_LOCAL_MACHINE\Software\JuniperSys\JSHome

Name Type Description

AppLock REG_DWORD Locks application choices. Press & Hold on
Application icon has no effect. 1 = locked, 0 or
missing means not locked.

11.2.3 Gadget Configuration

As indicated above, Gadgets can be configured by users. The Home Screen implements

gadgets as separate Dynamic Link Libraries. There are eleven gadgets provided:

Gadget DLL

Battery JSHome_Battery.dll

Bluetooth JSHome_Bluetooth.dll

Calendar JSHome_Calendar.dll

Clock JSHome_Clock.dll

Email JSHome_Email.dll

3G Modem JSHome_GPRS.dll

GPS Status JSHome_GPSStatus.dll

GPS Compass JSHome_GPSCompass.dll

Texting JSHome_SMS.dll

Tasks JSHome_Tasks.dll

Wi-Fi JSHome_Wifi.dll
The user manual has more information about each gadget. The Home Screen has “slots”

for six gadgets. The top row is always Wifi, Clock and Bluetooth. The Bottom row

varies depending upon the model. The first slot on the bottom row is Battery or else is

3G Modem if it is present. The second and third slots are Calendar and Email, but if the

unit is a “Geo” unit, they are GPS Status and GPS Compass respectively.

The defaults can be changed to other choices via registry key.

HKEY_LOCAL_MACHINE\Software\JuniperSys\JSHome\Gadgets

Name Type Description

Gadget1 REG_SZ Name of the DLL to be used in Gadget Slot 1, default is
JSHome_Wifi.dll

Gadget2 REG_SZ Name of the DLL to be used in Gadget Slot 2, default is
JSHome_Clock.dll

Gadget3 REG_SZ Name of the DLL to be used in Gadget Slot 3, default is
JSHome_Bluetooth.dll

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 11 of 25

Gadget4 REG_SZ Name of the DLL to be used in Gadget Slot 4, default is
JSHome_GPRS.dll if a Cell Modem is present, it is
JSHome_Battery.dll otherwise.

Gadget5 REG_SZ Name of the DLL to be used in Gadget Slot 5, default is
JSHome_GPSStatus.dll if the built-in GPS is present, it is
JSHome_Calendar.dll otherwise.

Gadget6 REG_SZ Name of the DLL to be used in Gadget Slot 6, default is
JSHome_GPSCompass.dll if the built-in GPS is present, it
is JSHome_Email.dll otherwise.

11.2.4 Update JSHome

The changes to the favorite applications and gadgets will take effect after: 1) a power

cycle, 2) a reset, 3) disabling and re-enabling JSHome (called “Mesa Dashboard” in

Start->Settings->Home->Items) or 4) by sending an event programmatically to JSHome.

The following code snippet provides the core of what needs to be done:

Handle hReloadEvent;

// Open the event named, “JSHOME_RELOAD”
hReloadEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE, L"JSHOME_RELOAD");

// Set the event (causes JSHome to update configured faves AND gadgets.
SetEvent(hReloadEvent);

// Close the event
CloseHandle(hReloadEvent);

For a more detailed sample, please refer to Appendix D: CAB File to Update JSHome

below.

11.2.5 Create Custom Gadget

A custom gadget can be created that can provide interactive capabilities. A home screen

gadget can:

 Show the state of a connected device or sensor such as a custom pod or a

configured Bluetooth device.

 Show the state of a program

 Launch a program

 Turn power on or off to a connected device or sensor

 Trigger an event, possibly for data collection

The existing gadgets do things like:

 Show the current battery level and provide access to the battery control panel

 Show or toggle the current state of a radio like GPS, Bluetooth, Wi-Fi and

Cellular

 Interact with a GPS "Compass"

An example gadget is provided below to show how to toggle the green LED.

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 12 of 25

12 Appendix A: Scan Codes for Keypad Customization
Customizing keys involves knowing the correct scan code that must be used.

Character/Key Scan Code

A 1C

B 32

C 21

D 23

E 24

F 2B

G 34

H 33

I 43

J 3B

K 42

L 4B

M 3A

N 31

O 44

P 4D

Q 15

R 2D

S 1B

T 2C

U 3C

V 2A

W 1D

X 22

Y 35

Z 1A

0 45

1 16

2 1E

3 26

4 25

5 2E

6 36

7 3D

8 3E

9 46

F1 05

F2 06

F3 04

F4 0C

F5 03

F6 0B

F7 83

F8 0A

F9 01

F10 09

F11 78

F12 07

F13 08

F14 10

Character/Key Scan Code

F15 18

F16 20

F17 28

F18 30

F19 38

F20 40

F21 48

F22 50

F23 57

F24 5F

UP 5C

DOWN 60

LEFT 62

RIGHT 63

TAB 0D

BACK QUOTE 0E

CLEAR 0F

LEFT ALT 11

LEFT SHIFT 12

LEFT WINDOWS 13

LEFT CONTROL 14

SPACE 29

COMMA 41

PERIOD 49

SLASH 4A

SEMICOLON 4C

HYPHEN 4E

DELETE 4F

APOSTROPHE 52

INSERT 53

LEFT BRACKET 54

RIGHT BRACKET 5B

EQUAL 55

ZOOM 56

CAPITAL 58

RIGHT SHIFT 59

RETURN 5A

BACKSLASH 5D

HELP 5E

CONVERT 64

BACK 66

NOCONVERT 67

TAB 68

NUMPAD0 70

NUMPAD1 69

NUMPAD2 72

NUMPAD3 7A

NUMPAD4 6B

NUMPAD5 73

NUMPAD6 74

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 13 of 25

Character/Key Scan Code

NUMPAD7 6C

NUMPAD8 75

NUMPAD9 7D

DECIMAL 71

ESCAPE 76

NUMLOCK 77

ADD 79

SUBTRACT 7B

Character/Key Scan Code

MULTIPLY 7C

SCROLL 7E

HOME 7F

END 80

PRIOR 81

NEXT 82

SNAPSHOT 84

13 Appendix B: Microsoft Documentation of Application
Button Configuration

Microsoft has provided information about how to initialize User Customizable Keys.

The proper way of modifying the registry is by using the following registry keys.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Shell\Keys\<app button key co

de>

For app button 1: <app button key code> = 40c1, scan code = A1

For app button 2: <app button key code> = 40c2, scan code = A2

For app button 3: <app button key code> = 40c3, scan code = A3

For app button 4: <app button key code> = 40c4, scan code = A4

For app button 5: <app button key code> = 40c5, scan code = A5

For app button 6: <app button key code> = 40c6, scan code = A6

Name Type Description

@ REG_SZ REQUIRED. Location/Name of app to launch

Name REG_SZ REQUIRED. Name that will appear on button
settings

Icon REG_SZ RECOMMENDED. Location/Name of icon to be
used (may be in a DLL with a reference to that
resource)

ResetCmd REG_SZ REQUIRED if Flags specifies an app, should be
same as the default value for the key, above

Flags REG_DWORD REQUIRED. Specifies if button executes a special
command instead of an application

ResetFlags REG_DWORD REQUIRED if Flags specifies a special command.

App flags used:

0 – Launch specified app (no special command)

1 – Start menu

2 – Toggle SIP

4 – Show Today screen

5 – Scroll up

6 – Scroll down

6 – Scroll left

8 – Scroll right

9 – Do nothing

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 14 of 25

10 – Done button (OK/X)

11 – Context menu

12 – Rotate Screen

13 – Left Soft Key

14 – Right Soft Key

Each User Customizable key that has been defined in the System Level customization

should be configured here.

; Task Manager
[HKEY_LOCAL_MACHINE\Software\Microsoft\Shell\Keys\40c1]
 @="\"\\Windows\\Start Menu\\Programs\\Task Manager.lnk\""
 "ResetCmd"="\"\\Windows\\Start Menu\\Programs\\Task Manager.lnk\""
 "Flags"=dword:0
 "Name"="App 1"

; Toggle Soft Input Panel
[HKEY_LOCAL_MACHINE\Software\Microsoft\Shell\Keys\40c2]
 "Flags"=dword:2 ; Toggle Sip
 "Name"="App 2"

; Brightness Down
[HKEY_LOCAL_MACHINE\Software\Microsoft\Shell\Keys\40c3]
 @="\"\\Windows\\BrightnessDown.lnk\""
 "ResetCmd"="\"\\Windows\\BrightnessDown.lnk\""
 "Flags"=dword:0
 "Name"="App 3"

; Brightness Up
[HKEY_LOCAL_MACHINE\Software\Microsoft\Shell\Keys\40c4]
 @="\"\\Windows\\BrightnessUp.lnk\""
 "ResetCmd"="\"\\Windows\\BrightnessUp.lnk\""
 "Flags"=dword:0
 "Name"="App 4"

; Left Soft Key
[HKEY_LOCAL_MACHINE\Software\Microsoft\Shell\Keys\40c5]
 "Flags"=dword:D ; Left Soft
 "Name"="Left Soft"

; Right Soft Key
[HKEY_LOCAL_MACHINE\Software\Microsoft\Shell\Keys\40c6]
 "Flags"=dword:E ; Right Soft
 "Name"="Right Soft"

14 Appendix C: Example Getting Started Content File
Getting Started content is stored in HTML files. The file below is the content for the

Bluetooth topic.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html lang="en">
<head>
<title>Getting Started</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css"
href="file://\windows\wc_style.css" />

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 15 of 25

</head>

<body>
 <p> Set up a
Bluetooth device</p>
 <table>
 <tr>
 <td>You can set up a Bluetooth device in Settings >
Bluetooth.</td>
 <td><img
src="shortcut.gif" alt="" /></td>
 </tr>
 </table>
 <table>
 <tr>
 <td>The following steps explain how to prepare your unit
and Bluetooth device for a connection:</td>
 </tr>
 <tr>
 <td>1. Turn on your Bluetooth device and place it within a
few feet of your unit.</td>
 </tr>
 <tr>
 <td>2. Set your Bluetooth device to visible. This allows
your unit to detect it and establish a connection.</td>
 </tr>
 <tr>
 <td>3. On the Bluetooth page in Settings,
click Add a new device.</td>
 </tr>
 <tr>
 <td>4. Select your Bluetooth device from the list, and
then follow the instructions on the screen.</td>
 </tr>
 </table>
</body>
</html>

15 Appendix D: CAB File To Update JSHome

15.1 Problem Statement

Resellers and application developers can take advantage of the ability to install an

application and have that application immediately available in the “Applications” bar of

the Juniper Systems Home Screen. This paper will provide a description of the steps that

must be taken to install an application that will be available to the Juniper Systems Home

Screen and to make it visible on the “Applications” bar.

15.2 Background

The JS Home Screen uses the registry to define which gadgets and applications show up

where. The end user can change which gadgets and applications are shown. When this

change is made, JS Home Screen first updates registry settings that indicate which gadget

and application go where, and then updates the appearance and linkages during that

operation.

Note 1: The end user can be locked out of making any changes to the gadget
and application configuration of JS Home Screen. This is documented in the

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 16 of 25

customization guide.

Note 2: when the user presses and holds on an application icon in the
“Applications” bar, it will display a list of applications. This list is generated
dynamically from the applications found in the Start Menu. The Start Menu and
JS Home Screen use the shortcuts found in “\Windows\Start Menu\Programs”.
Newly installed applications should add a shortcut file there directing them to the
actual executable.

This installation method assumes that a CAB file is being used to install the application.

The CAB file can be augmented to execute your code during the installation / un-

installation process, before and/or after performing the actual installation operations. This

is done through what is known as a setup dynamic link library or setup.dll. The Windows

CE/Windows Mobile installer, wceload.exe, looks at the configuration data in the CAB

file for a configured setup.dll that contains functions that are called as part of the process.

Note 3: More information about Setup DLLs in CAB files can be found at this
Microsoft Developer Network web page. Also search for an article titled,
“Optional Setup.dll Files for Installation”.

15.3 Application Installation

When an application is installed, no further action is taken by JS Home Screen, except

that when the user chooses to change an application showing on the home screen, the list

of available applications will include the new application (if the install process for the

application included a shortcut in the “\Windows\Start Menu\Programs” directory). The

installer can change the registry so that the application is configured as part of the

“Applications” bar on the JS Home Screen, but until further action is taken (a reboot,

enabling and disabling JS Home Screen, etc), no change is made to the functionality of JS

Home Screen.

In order to trigger the change, JS Home Screen must receive some sort of notification.

This takes the form of a named system event. Events are used to synchronize and

communicate between processes on the system. The event that is used is named,

“JSHOME_RELOAD”. It will cause JS Home to update the gadgets and applications

that are shown. This event can be set or triggered as part of the installation process.

15.4 Step-By-Step

Follow these steps to have your application displayed as a choice on the “Applications”

bar of JS Home Screen. This assumes that you can change the installer for the

application and that the installer is a CAB file. You can use Visual Studio to create the

CAB file for you or you can use the command line tool, cabwiz.exe. This step-by-step

should be able to work with both methods.

Step 1: Add the registry change to make your application show up in the “Applications”

bar:

http://msdn.microsoft.com/en-us/library/aa924308.aspx

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 17 of 25

[HKEY_LOCAL_MACHINE\Software\JuniperSys\JSHome\Apps]
 “App4”=”\Windows\Start Menu\Programs\<app name>.lnk”

Note that it calls out the shortcut file discussed above.

Step 2: Build a DLL as described in this MSDN page: http://msdn.microsoft.com/en-

us/library/aa924308.aspx, include this code in the routine Install_Exit:

HANDLE hReloadEvent;

// Open the named event
hReloadEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE, L"JSHOME_RELOAD");

// Set the event (forces JSHome to update configured faves AND gadgets.
SetEvent(hReloadEvent);

// Close the event
CloseHandle(hReloadEvent);

Add this to your CAB file configuration, either in Visual Studio or in the .ini file for your

CAB file if building with cabwiz.

Step 3: Configure the setup DLL to be the one used by wceload:

In Visual Studio, select your “Smart Device” CAB project, click on the “Properties” tab

(NOTE: NOT the “Properties” item in the right-click context menu!), make sure that “CE

Setup DLL” is set to the name of your DLL which you have added to your Visual Studio

solution.

In the .ini file, set:

CESetupDLL=<nameofsetup.dll>

Where <nameofsetup.dll> is the name of your setup dll file, which should already be a

part of your .ini file.

Step 4: Build your cab file!

15.4.1 Sample code

JSHome registry settings for the configured gadgets and applications does not take effect

immediately when the registry settings are changed. As mentioned above, there are other

methods that can be used to cause these settings to take effect, this is a description of how

this can be done through a CAB file. This sample was done using Visual Studio 2008

and the Windows Mobile 6.0 (or 6.5) SDK, so there may be some variation in steps. The

basic concept is this. CAB files allow the addition of a DLL, usually called “setup.dll”

that contains functions that are executed at the beginning of installation, after installation

is complete, before un-installation, and after un-installation is complete. See this MSDN

article for more information. This walks through the process of creating a setup DLL and

how to include it in a CAB file.

I have created a Visual Studio project that consists of:

http://msdn.microsoft.com/en-us/library/aa924308.aspx
http://msdn.microsoft.com/en-us/library/aa924308.aspx
http://msdn.microsoft.com/en-us/library/aa924308.aspx
http://msdn.microsoft.com/en-us/library/aa924308.aspx

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 18 of 25

 A sample application (CustomCABApp)

 The setup DLL (CustomCABSetup)

 The Smart Device CAB file (CustomCABInstaller)

o Sets the registry for JSHome

o Creates a shortcut for the application so it will show up in the Start Menu

(and the JSHome application list)

o Installs the application

o Installs and runs the Setup.dll

The project is available upon request, but the following shows the most significant parts:

Here is the code from my sample DLL (I called this file CustomCABSetup.cpp):
#include <windows.h>
#include <ce_setup.h>

codeINSTALL_INIT
Install_Init(
 HWND hwndParent,
 BOOL fFirstCall, // is this the first time this function
is being called?
 BOOL fPreviouslyInstalled,
 LPCTSTR pszInstallDir
)
{
 // For our purposes, there is nothing left to do here, just
continue.
 return codeINSTALL_INIT_CONTINUE;
}

codeINSTALL_EXIT
Install_Exit(
 HWND hwndParent,
 LPCTSTR pszInstallDir,
 WORD cFailedDirs,
 WORD cFailedFiles,
 WORD cFailedRegKeys,
 WORD cFailedRegVals,
 WORD cFailedShortcuts
)
{
 HANDLE hReloadEvent;

 // Were there any failures to install items?
 if ((cFailedDirs == 0) &&
 (cFailedFiles == 0) &&
 (cFailedRegKeys == 0) &&
 (cFailedRegVals == 0) &&
 (cFailedShortcuts == 0))
 { // NO. Get a handle to the JSHome Reload event
 hReloadEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE,
L"JSHOME_RELOAD");

 // Set the event (will force JSHome to update the configured
favorites AND gadgets.
 SetEvent(hReloadEvent);

 // Close the event
 CloseHandle(hReloadEvent);

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 19 of 25

 }
 return codeINSTALL_EXIT_DONE;
}

codeUNINSTALL_INIT
Uninstall_Init(
 HWND hwndParent,
 LPCTSTR pszInstallDir
)
{
 // TODO: Add custom uninstallation code here
 return codeUNINSTALL_INIT_CONTINUE;
}

codeUNINSTALL_EXIT
Uninstall_Exit(
 HWND hwndParent
)
{
 // TODO: Add custom uninstallation code here
 return codeUNINSTALL_EXIT_DONE;
}

Visual Studio generates an INF file for CABWIZ.exe to use to create the CAB file:

[Version]
Signature="$Windows NT$"
Provider="Custom Company"
CESignature="$Windows CE$"

[CEStrings]
AppName="CustomCABInstaller"
InstallDir=%CE1%\%AppName%

[Strings]
Manufacturer="Custom Company"

[CEDevice]
VersionMin=4.0
VersionMax=6.99
BuildMax=0xE0000000

[DefaultInstall]
CEShortcuts=Shortcuts
AddReg=RegKeys
CopyFiles=Files.Common1,Files.Common2
CESetupDLL="CustomCABSetup.dll"

[SourceDisksNames]
1=,"Common1",,"C:\Documents and Settings\JohnM\My Documents\Visual
Studio 2008\Projects\Samples\CustomCABInstaller\CustomCABSetup\Windows
Mobile 6.5.3 Professional DTK (ARMV4I)\Release\"
2=,"Common2",,"c:\Documents and Settings\JohnM\My Documents\Visual
Studio 2008\Projects\Samples\CustomCABInstaller\CustomCABApp\Windows
Mobile 6.5.3 Professional DTK (ARMV4I)\Release\"

[SourceDisksFiles]
"CustomCABSetup.dll"=1
"CustomCABApp.exe"=2

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 20 of 25

[DestinationDirs]
Shortcuts=0,%CE2%\Start Menu
Files.Common1=0,"%CE2%"
Files.Common2=0,"%CE1%"

[Files.Common1]
"CustomCABSetup.dll","CustomCABSetup.dll",,0

[Files.Common2]
"CustomCABApp.exe","CustomCABApp.exe",,0

[Shortcuts]
"CustomCABApp",0,"CustomCABApp.exe","%CE11%"

[RegKeys]
"HKLM","Software\JuniperSys\JSHome\Apps","App4","0x00000000","\Windows\
Start Menu\Programs\CustomCABApp.lnk"

16 Appendix E: Sample Gadget to Toggle Green LED
The following code implements a gadget for JSHome. This code is intended to be used

in a Visual Studio 2008 project, with the Windows Mobile 6.5.3 DTK installed. It is also

intended for use with JSAPI or the Juniper Systems API set. The project is available as a

separate ZIP archive.

Gadget.cpp

// Copyright 2011 Juniper Systems, Inc.
// This example source code is only to be used with permission from
Juniper
// Systems under NDA.

#include <windows.h>
#include "JSHomeGadget.h"
#include "JSAPI.h"

// This is a very simple sample of how to create a Gadget for JSHome.
This
// sample simply toggles the green LED when the gadget is pressed. The
notes
// above each function and in JSHomeGadget.h explain the interface
between
// JSHome, and the gadgets. If there is something that doesn't make
sense, or
// if you have any questions, please contact us.
//
// This sample links to JSAPI only to toggle the green LED. Linking to
JSAPI
// or including JSAPI.h is not needed for it to be a gadget in JSHome.

// The project settings deploy this and the two graphics to the
\Windows folder
// on the device.
//
// Manually add the following registry keys to have JSHome see this
gadget

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 21 of 25

//
[HKEY_LOCAL_MACHINE\Software\JuniperSys\JSHome\Gadgets\Example_Gadget]
// This subkey name doesn't matter
// "DLL"="ExampleGadget.dll" // If we were going to put our
gadget DLL somewhere besides the windows directory, we would probably
need the path included here are well.
// "Name"="My Button Gadget" // Name of the gadget that
shows up in the Gadget select menu.
//
// After changing the above registry key, you can either reboot, or
unload and
// reload JSHome (Start->Settings->Home->Items tab->Date->OK; Home-
>Items->Dashboard)
//
// Then to load this gadget, go to the JSHome menu and select
"Configure",
// click on the gadget location you want, and then select "My Button
Gadget".
//
// During development, after making code changes, deselect the gadget
from
// JSHome (so that the DLL unloads), deploy with the new changes, and
re-select
// this gadget back into JSHome.
//
// An installer may want to set this gadget to be one of the six
gadgets
// selected into the JSHome screen. The following registry key
specifies the
// six gadgets that are selected.
// [HKEY_LOCAL_MACHINE\Software\JuniperSys\JSHome\Gadgets]
// "Gadget0"="ExampleGadget.dll"
// There are also values for "Gadget1" through "Gadget5".
//
// There is a JSHome reload event that can be triggered. Setting this
event
// will caause JSHome to check the registry and reload the gadgets and
// application shortcuts.
// #define EVENT_JSHOME_RELOAD TEXT("JSHOME_RELOAD")

// We actually recommend a size of 90x90 with the bottom part being a
// semi-transparent reflection of the icon, but as I was just after
some quick
// graphics I found online, I have 96x96 here.
// For a good example, look in the Windows directory on the device at
any of
// the JSHome_*.png files.
#define GRAPHIC_WIDTH 96 // Do not exceed GADGET_PIXEL_WIDTH
#define GRAPHIC_HEIGHT 96 // Do not exceed
GADGET_PIXEL_HEIGHT

BOOL g_bLEDon = FALSE;

// Nothing to do in here
BOOL APIENTRY DllMain(HANDLE hModule, DWORD ul_reason_for_call, LPVOID
lpReserved)
{
 return TRUE;
}

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 22 of 25

// This is called once before JSHome loads this Gadget.
// This is our change to tell JSHome what we want, and how this gadget
is
// configgured. We fill out the JS_HOME_GADGET_INFO structure here for
the
// first time.
// The only parts of the JS_HOME_GADGET_INFO structure that are
initialized
// before this function is called are the textColor, and the
hJSHomeWnd.
//
// Return
// TRUE - if we want to be loaded
// FALSE - if there were problems. JSHome will not load this. It
will
// also NOT call JSHomeGadgetDestroy(), so we would need
to do any
// cleanup before returning.
extern "C" __declspec(dllexport) BOOL
JSHomeGadgetInit(JS_HOME_GADGET_INFO * pGadgetInfo)
{
 g_bLEDon = FALSE;

 pGadgetInfo->bPollingNOTevent = TRUE; // Won't matter as we set
INFINITE and NULL below
 pGadgetInfo->dwPollInterval = INFINITE;
 pGadgetInfo->hEvent = NULL;

 pGadgetInfo->bPngFileNOTicon = TRUE;
 pGadgetInfo->dwResourceID = 0;
 memset(pGadgetInfo->wcName, 0, MAX_PATH*sizeof(WCHAR));
 swprintf(pGadgetInfo->wcName, L"\\Windows\\Gray-Button.png");

 pGadgetInfo->rcGraphic.left = (GADGET_PIXEL_WIDTH - GRAPHIC_WIDTH)
/ 2;
 pGadgetInfo->rcGraphic.right = pGadgetInfo->rcGraphic.left +
GRAPHIC_WIDTH;
 pGadgetInfo->rcGraphic.top = (GADGET_PIXEL_HEIGHT - GRAPHIC_HEIGHT)
/ 2;
 pGadgetInfo->rcGraphic.bottom = pGadgetInfo->rcGraphic.top +
GRAPHIC_HEIGHT;

 return TRUE;
}

// If JSHome exits or it loads a different gadget in place of this one,
this
// will get called to unload this gadget.
// This gives us a chance to shut down threads and cleanup.
extern "C" __declspec(dllexport) void JSHomeGadgetDestroy()
{
}

// This function is called after JSHome recieves our event
// (pGadgetInfo->hEvent), or the timeout occurs (pGadgetInfo-
>dwPollInterval).
// It we return TRUE from JSHomeGadgetColorChange, then this is called
// immediately after.
extern "C" __declspec(dllexport) BOOL
JSHomeGadgetGetImageInfo(JS_HOME_GADGET_INFO * pGadgetInfo)
{
 return FALSE;

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 23 of 25

}

// This function is called when the user presses (and releases
relatively
// quickly) on our gadget. This gives us a chance to perform any
actions we
// want, and then to change the text or graphics being displayed.
// Typically the action to perform here is change the state of
something.
//
// Return TRUE to have JSHome to re-paint the graphics or text. FALSE
// indicates that no graphics have changed.
extern "C" __declspec(dllexport) BOOL
JSHomeGadgetPressed(JS_HOME_GADGET_INFO * pGadgetInfo)
{
 g_bLEDon = !g_bLEDon;

 if(g_bLEDon)
 {
 swprintf(pGadgetInfo->wcName, L"\\Windows\\Green-Button.png");
 JSSetLEDStatusEx(LED_GREEN, LED_GREEN);
 }
 else
 {
 swprintf(pGadgetInfo->wcName, L"\\Windows\\Gray-Button.png");
 JSSetLEDStatusEx(0, LED_GREEN);
 }

 // Image changed, so return TRUE
 return TRUE;
}

// This function is called when the user presses and holds on our
gadget. This
// gives us a chance to perform any actions we want, and then to change
the
// text or graphics being displayed.
// Typically the action here is to go to a control panel associated
with this
// gadget.
//
// Return TRUE to have JSHome to re-paint the graphics or text. FALSE
// indicates that no graphics have changed.
extern "C" __declspec(dllexport) BOOL
JSHomeGadgetPressedAndHeld(JS_HOME_GADGET_INFO * pGadgetInfo)
{
 // No image change, so return FALSE
 return FALSE;
}

// When JSHome loses or gains visibility (not just focus), then it
calls this
// function. This gives us a chance to pause worker threads so we
don't
// consume system resources for when we are in the background.
extern "C" __declspec(dllexport) void JSHomeGadgetVisible(BOOL
bVisible)
{
}

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 24 of 25

// If the user changes the color theme of JSHome, then the text Color
boxes
// get switched to the "preferred color". This is called just after
that to
// give us a chance to overwrite that. This would be useful if one of
our text
// boxes is on top of our graphic (such as a clock), and we always
wanted it to
// stay the same.
//
// If we do nothing here, then we will be drawing white text on a dark
// background or vica-versa depending on the color scheme of JSHome.
//
// Return TRUE to have JSHome call JSHomeGadgetGetImageInfo after this
returns.
// (Only needed if we changed the text color).
extern "C" __declspec(dllexport) BOOL
JSHomeGadgetColorChange(JS_HOME_GADGET_INFO * pGadgetInfo)
{
 return FALSE;
}

JSHomeGadget.h

// Copyright 2011 Juniper Systems, Inc.
// This example source code is only to be used with permission from
Juniper
// Systems under NDA.

#pragma once
#include <windows.h>

#define DBG_THREADS 0

#define GADGET_PIXEL_WIDTH 160
#define GADGET_PIXEL_HEIGHT 128

#define NUM_GADGET_TEXT_BOXES 4
#define GADGET_TEXT_LENGTH 100

typedef struct
{
 RECT rcText;
 WCHAR wcText[GADGET_TEXT_LENGTH];
 UINT uFormat;
 COLORREF textColor; // JSHome will pass down the preferred
color to use here, the gadget has the option to change it
 LOGFONT lf;
} JS_HOME_GADGET_TEXT_BOX;

// Used to pass info back and forth from gadget DLL and JSHome
typedef struct
{
 // bPollingNOTevent determines when JSHomeGadgetGetImageInfo gets
called.
 // bPollingNOTevent dwPollInterval hEvent *
Result *
 // ---
--

 © COPYRIGHT 2010 Juniper Systems, Inc.

 Page 25 of 25

 // FALSE INFINITE ourEvent When we
set "ourEvent", then JSHome will call JSHomeGadgetGetImageInfo
 // FALSE 5000 ourEvent When we
set "ourEvent", or after 5 seconds, then JSHome will call
JSHomeGadgetGetImageInfo
 // TRUE 5000 n/a Every 5
seconds, JSHome will call JSHomeGadgetGetImageInfo
 BOOL bPollingNOTevent;
 DWORD dwPollInterval; // in ms
 HANDLE hEvent; // event that gets set if not
polling

 // JSHome can paint either a PNG from a file or an icon(.ico) from
a
 // resource DLL. If bPngFileNOTicon is TRUE, then it looks for a
PNG file
 // located at wcName[]. If bPngFileNOTicon is FALSE, then it loads
an icon
 // from resource ID dwResourceID from the dll located at wcName[].
If
 // wcName is NULL, it will load the icon from this Gadget.
 // For a "Text Only" gadget, set wcName to NULL, bPngFileNOTicon to
FALSE and dwResourceID to 0.
 BOOL bPngFileNOTicon;
 DWORD dwResourceID;
 RECT rcGraphic; // Where on the gadget to display
the icon or png - should match the size of the PNG or icon as well.
 WCHAR wcName[MAX_PATH];

 // text boxes (and colors)
 JS_HOME_GADGET_TEXT_BOX textBox[NUM_GADGET_TEXT_BOXES];
 HWND hJSHomeWnd;
} JS_HOME_GADGET_INFO;

